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Motivation: Silent Speech Interface

● Rehabilitation/accessibility 
devices, e.g., Laryngectomy 
patients.

● Human Machine Interface via 
speech-to-text control.

● Covert communication for 
military applications.

Example silent speech device proposed in 
[1].
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Ultrasound Imaging for Articulatory Muscle 
Sensing
● Ultrasound imaging is 

non-invasive modality that can 
capture structural and 
dynamical information of the 
internal tissues.

● Potential for miniaturization 
and wearable conformal 
devices.

● Newer transducer 
technologies can be integrated 
on chip (CMUT, PMUT).

Wearable conformal ultrasound imaging device 
proposed in [2].
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Objective

● Investigate the feasibility of silent speech interface using 
ultrasound image sequences of the tongue and palate.

● Word classification from limited vocabulary selected for 
preliminary study.

● Explore data pre-processing steps to improve the learning 
efficiency of the classification model.
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Experimental Methodology

● Ultrasound image sequences 
acquired from tongue and palate 
during word utterance.

● Four words from Spelling Alphabet 
selected for classification: 
‘Alpha’, ‘Bravo’, ’Charlie’, ’Delta’.

● 50 samples of each utterance 
obtained in 3 second image 
sequence recordings.

● One human subject.
Experimental configuration of ultrasound 
image acquisition.
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Data Acquisition Parameters

● Verasonics Vantage 64 LE 
Research Platform with linear 
probe.

● Plane-wave transmit and receive.

● 128 transmit elements, 64 
receive.

● 7 MHz ultrasound center 
frequency.

● 100 Hz frame rate.

Ultrasound image sequence montage of 
articulatory tissues during utterance of 
‘alpha’.

palate echo
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Ultrasound Image Reconstruction

● Ultrasound radiofrequency signals 
demodulated using absolute value 
of the Hilbert transform.

● Gain compensation applied along 
depth of signal to counteract wave 
attenuation in pixel intensity.

● Normalized to range [-1,1]. (Black) ultrasound radiofrequency signal, (red) 
envelope signal obtained via Hilbert transform.
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Acquired Dataset

● Dataset consists of 4 classes with 50 samples each.
● Each sample is a (315, 64, 300) UTI sequence.

Class Number of 
Samples

Alpha 50

Bravo 50

Charlie 50

Delta 50
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Data Preprocessing - Resizing

● In literature, images have been downsampled to 96x64 [3], 
128x128 [4], 128x64 [6].

● We explore downsampling to the following input sizes using 
bilinear interpolation:
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Data Preprocessing - Frame Selection

● Not all frames are necessary. Sometimes, only one single 
frame is enough [5, 6], or several frames are used [3, 4].

● We take [9, 16, 25, 36, 49, 64, 81, 100] evenly-spaced frames.
● Frames are stitched together for CNN-based models [3, 4].
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Data Preprocessing - Temporal Processing

● We explore selecting representative frames by extraction vs. 
averaging with a number-of-frames-dependent window size.

● Averaging may help reduce random noise.
● Training samples are augmented by randomly offsetting the 

evenly-spaced frame indexes and randomly adjusting the 
window size.
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Data Preprocessing - Otsu Thresholding

● We explore Otsu multi-threshold intensity-based 
segmentation to reduce noise and simplify inputs.
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Data Preprocessing - Motion Maps

● We investigate absolute temporal differentiation using 
multi-Otsu thresholding to generate motion map inputs.
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Training/Validation/Test Splits

● We split the dataset into 0.64, 0.16, 0.2 subsets for training, 
validation, and testing, respectively.

● Note that the training set is augmented (randomly selected 
frames and average-windows) to avoid overfitting.

Subset Percentage Number of 
Samples

Training (augmented during training) 0.64 128

Validation 0.16 32

Testing 0.2 40
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CNN-Based Models

● Several papers apply CNNs to perform 
articulation-to-acoustic conversion using single frames [3, 5] 
or several frames [4].

● Articulation-to-class conversion has been done using a CNN 
with single frame inputs [5].

● We create and tune our own CNN with our dataset based on 
their works to perform articulation-to-class conversion.

Preprocessing CNN

Alpha

Bravo

Charlie

Delta
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CNN Model Implementation

● Dropout of 0.2 after each layer 
with learnable parameters.

● Batch normalization after each 
layer with learnable parameters.

● Batch Size = 32
● Learning Rate = 0.01
● Optimizer = Adam
● Gradient Clipping = 0.5
● Trained on Cross Entropy Loss
● Trained for 100 epochs

Conv2D(in=1, out=16, kernel=3)

MaxPool2D(kernel=2, stride=2)

Leaky ReLU

Flatten

Linear(in=VARIABLE, out=16)

Leaky ReLU

Conv2D(in=1, out=16, kernel=5)

MaxPool2D(kernel=2, stride=2)

Leaky ReLU

Linear(in=16, out=16)

Leaky ReLU

Linear(in=16, out=4)

Softmax
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CNN Model Tuning - Resizing

Processing 
Stage

Optimal Value

Resizing 64 x 64

Frames

Temporal 
Strategy

Motion Map

Otsu Classes
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CNN Model Tuning - Frames

Processing 
Stage

Optimal Value

Resizing 64 x 64

Frames 49

Temporal 
Strategy

Motion Map

Otsu Classes
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CNN Model Tuning - Temporal Strategy

Processing 
Stage

Optimal Value

Resizing 64 x 64

Frames 49

Temporal 
Strategy Average

Motion Map

Otsu Classes
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CNN Model Tuning - Motion Map and Otsu

Processing 
Stage

Optimal Value

Resizing 64 x 64

Frames 49

Temporal 
Strategy Average

Motion Map True

Otsu Classes 3



22

 
uOttawa.ca

3D CNN-Based Models

● Rather than stitch frames together to make one-big image, we 
can process sequence as a volume using 3D CNNs [6].

● 3D CNNs can learn frame-to-frame changes better (but more 
parameters needed).

● We implement a modified 3D CNN architecture described in [6] 
to compare with the CNN.

Preprocessing 3D 
CNN

Alpha

Bravo

Charlie

Delta
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3D CNN Model Implementation

● Dropout of 0.2 after each layer 
with learnable parameters.

● Batch normalization after each 
layer with learnable parameters.

● Batch Size = 32
● Learning Rate = 0.01
● Optimizer = Adam
● Gradient Clipping = 0.5
● Trained on Cross Entropy Loss
● Trained for 100 epochs

Conv3D(in=1, out=16, kernel=3)

MaxPool3D(kernel=2, stride=2)

Leaky ReLU

Flatten

Linear(in=VARIABLE, out=16)

Leaky ReLU

Conv3D(in=1, out=16, kernel=5)

MaxPool3D(kernel=2, stride=2)

Leaky ReLU

Linear(in=16, out=16)

Leaky ReLU

Linear(in=16, out=4)

Softmax
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3D CNN Model Tuning

Processing 
Stage

Optimal Value

Resizing 64 x 64

Frames 49

Temporal 
Strategy Average

Motion Map True

Otsu Classes 3
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Test Results

CNN
● Accuracy: 85 %

3D CNN
● Accuracy: 92.5 %
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Summary and Conclusions

● Collected a four-class dataset of UTI sequences for 
classification.

● CNNs and 3D CNNs were implemented to perform four-way 
classification on UTI sequences.

● Significant preprocessing is required for acceptable model 
performance, particularly noise-removal and image 
simplification (segmentation).

● Results show that the change in frames could be more 
important than the frames themselves for classification.

● 3D CNNs are better suited for the 3D volumetric data.
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Future Work

● We will collect more samples from more subjects to generate 
more reliable test/validation performance estimates.

● Evaluate other common models in literature.
● Collect more classes (> 10) to investigate few-shot learning. 

techniques for classification of unseen UTI sequences classes.
● Investigate the CNN and 3D CNN models using Grad-CAM to 

understand why misclassifications occur and how to prevent 
them.
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