#### **Ultrasound Tongue Image Sequence Classification Using Deep Learning**

Presented by: Khoa Tran and Shane Steinberg



#### **Speakers**



Khoa Tran



Shane Steinberg





## **Motivation: Silent Speech Interface**

- Rehabilitation/accessibility devices, e.g., Laryngectomy patients.
- Human Machine Interface via speech-to-text control.
- Covert communication for military applications.



Example silent speech device proposed in [1].





## Ultrasound Imaging for Articulatory Muscle Sensing

- Ultrasound imaging is non-invasive modality that can capture structural and dynamical information of the internal tissues.
- Potential for miniaturization and wearable conformal devices.
- Newer transducer technologies can be integrated on chip (CMUT, PMUT).



Wearable conformal ultrasound imaging device proposed in [2].



# 5

## **Objective**

- Investigate the feasibility of silent speech interface using ultrasound image sequences of the tongue and palate.
- Word classification from limited vocabulary selected for preliminary study.
- Explore data pre-processing steps to improve the learning efficiency of the classification model.



## **Experimental Methodology**

- Ultrasound image sequences acquired from tongue and palate during word utterance.
- Four words from Spelling Alphabet selected for classification: 'Alpha', 'Bravo', 'Charlie', 'Delta'.
- 50 samples of each utterance obtained in 3 second image sequence recordings.
- One human subject.



Experimental configuration of ultrasound image acquisition.





## **Data Acquisition Parameters**

- Verasonics Vantage 64 LE Research Platform with linear probe.
- Plane-wave transmit and receive.
- 128 transmit elements, 64 receive.
- 7 MHz ultrasound center frequency.
- 100 Hz frame rate.

palate echo

Ultrasound image sequence montage of articulatory tissues during utterance of 'alpha'.





## **Ultrasound Image Reconstruction**

- Ultrasound radiofrequency signals demodulated using absolute value of the Hilbert transform.
- Gain compensation applied along depth of signal to counteract wave attenuation in pixel intensity.
- Normalized to range [-1,1].



(Black) ultrasound radiofrequency signal, (red) envelope signal obtained via Hilbert transform.





#### **Acquired Dataset**

- Dataset consists of 4 classes with 50 samples each.
- Each sample is a (315, 64, 300) UTI sequence.





## **Data Preprocessing - Resizing**

- In literature, images have been downsampled to 96x64 [3], 128x128 [4], 128x64 [6].
- We explore downsampling to the following input sizes using bilinear interpolation:



32x32

64x64

96x64







## **Data Preprocessing - Frame Selection**

- Not all frames are necessary. Sometimes, only one single frame is enough [5, 6], or several frames are used [3, 4].
- We take [9, 16, 25, 36, 49, 64, 81, 100] evenly-spaced frames.
- Frames are stitched together for CNN-based models [3, 4].







## **Data Preprocessing - Temporal Processing**

- We explore selecting representative frames by **extraction** vs. averaging with a number-of-frames-dependent window size.
- Averaging may help reduce random noise.
- Training samples are **augmented** by randomly offsetting the evenly-spaced frame indexes and randomly adjusting the window size.



EXTRACT



**AVERAGE** 





## **Data Preprocessing - Otsu Thresholding**

• We explore **Otsu multi-threshold** intensity-based segmentation to reduce noise and simplify inputs.







3 CLASSES







4 CLASSES





## **Data Preprocessing - Motion Maps**

• We investigate **absolute temporal differentiation** using **multi-Otsu thresholding** to generate motion map inputs.





2 CLASSES



3 CLASSES



4 CLASSES





## **Training/Validation/Test Splits**

- We split the dataset into 0.64, 0.16, 0.2 subsets for training, validation, and testing, respectively.
- Note that the training set is augmented (randomly selected frames and average-windows) to avoid overfitting.

| Subset                               | Percentage | Number of<br>Samples |
|--------------------------------------|------------|----------------------|
| Training (augmented during training) | 0.64       | 128                  |
| Validation                           | 0.16       | 32                   |
| Testing                              | 0.2        | 40                   |





#### **CNN-Based Models**

- Several papers apply CNNs to perform articulation-to-acoustic conversion using single frames [3, 5] or several frames [4].
- Articulation-to-class conversion has been done using a CNN with single frame inputs [5].
- We create and tune our own CNN with our dataset based on their works to perform **articulation-to-class conversion**.



## **CNN Model Implementation**





- Dropout of 0.2 after each layer with learnable parameters.
- Batch normalization after each layer with learnable parameters.
- Batch Size = **32**
- Learning Rate = 0.01
- Optimizer = **Adam**
- Gradient Clipping = **0.5**
- Trained on Cross Entropy Loss
- Trained for 100 epochs





## **CNN Model Tuning - Resizing**





#### **CNN Model Tuning - Frames**







## **CNN Model Tuning - Temporal Strategy**





temporal\_strategy\_average

temporal\_strategy\_extract -



motion\_map\_classes\_2

## **CNN Model Tuning - Motion Map and Otsu**

----- otsu\_classes\_2

---- otsu\_classes\_3

otsu\_classes\_4

\_

|                      |               |                   | motion_ma | p_classes_3 — r | motion_map_classes      | _4                      |            |       |
|----------------------|---------------|-------------------|-----------|-----------------|-------------------------|-------------------------|------------|-------|
| Processing<br>Stage  | Optimal Value | 1<br>0.8          | MAX       |                 |                         | SAG                     |            |       |
| Resizing             | 64 x 64       | dation Accur.     | DNA       | y wv            |                         |                         | VV 4       |       |
| Frames               | 49            | 0.4               |           |                 |                         |                         |            |       |
| Temporal<br>Strategy | Average       |                   | 50        | 100             | 150<br>S                | 200 250<br>teps         | 300        | 350   |
| Motion Map           | True          | 8.0<br>0.0<br>0.0 |           |                 |                         |                         |            |       |
| Otsu Classes         | 3             | 4.0 Test Ao       |           |                 |                         |                         |            |       |
|                      |               | 0                 | otsu 2    | otsu 3          | otsu 4<br>Motion Maps a | mm 2<br>nd Segmentation |            | mm 4  |
| tawa.ca              |               |                   |           |                 |                         | 4                       | <u></u> uU | niawa |



### **3D CNN-Based Models**

- Rather than stitch frames together to make one-big image, we can process sequence as a volume using 3D CNNs [6].
- 3D CNNs can learn frame-to-frame changes better (but more parameters needed).
- We implement a modified 3D CNN architecture described in [6] to compare with the CNN.





## **3D CNN Model Implementation**



- Dropout of 0.2 after each layer with learnable parameters.
- Batch normalization after each layer with learnable parameters.
- Batch Size = 32
- Learning Rate = 0.01
- Optimizer = Adam
- Gradient Clipping = **0.5**
- Trained on Cross Entropy Loss
- Trained for **100 epochs**





### **3D CNN Model Tuning**



#### **Test Results**



## **CNN**

• Accuracy: 85 %



#### **3D CNN**







## **Summary and Conclusions**

- Collected a four-class dataset of UTI sequences for classification.
- CNNs and 3D CNNs were implemented to perform four-way classification on UTI sequences.
- Significant preprocessing is required for acceptable model performance, particularly noise-removal and image simplification (segmentation).
- Results show that the change in frames could be more important than the frames themselves for classification.
- 3D CNNs are better suited for the 3D volumetric data.





#### **Future Work**

- We will collect more samples from more subjects to generate more reliable test/validation performance estimates.
- Evaluate other common models in literature.
- Collect more classes (> 10) to investigate few-shot learning. techniques for classification of unseen UTI sequences classes.
- Investigate the CNN and 3D CNN models using Grad-CAM to understand why misclassifications occur and how to prevent them.



#### References

[1] A. Kapur, S. Kapur and Pattie Maes, "AlterEgo: A Personalized Wearable Silent Speech Interface", in *International Conference on Intelligent User Interfaces*, Tokyo, Japan, 2018, p.43-53

[2] C. Wang *et al.*, "Continuous Monitoring of Deep-Tissue Haemodynamics With Stretchable Ultrasound Phased Arrays", *Nature Biomedical Engineering*, vol. 5, no. 7, 2021

[3] E. M. Juanpere and T. G. Csapo, "Ultrasound-Based Silent Speech Interface Using Convolutional and Recurrent Neural Networks", *Acta Acustica united with Acustica*, vol. 105, no. 4, 2019

[4] N. Kimura, M. Kono and J. Rekimoto, "SottoVoce: An Ultrasound Imaging-Based Silent Speech Interaction Using Deep Neural Networks", in *International Conference on Human-Computer Interaction*, Glasgow, Scotland, 2019, p.1-11

[5] M. S. Riberio, A. Eshky, K. Richmond and S. Renals, "Speaker-Independent Classification of Phonetic Segments From Raw Ultrasound in Child Speech", 2019, *arXiv:1907.01413v1* 

[6] L. Toth and A. H. Shandiz, "3D Convolutional Neural Network for Ultrasound-Based Silent Speech Interfaces", 2014, *arXiv:2014.11532v1* 

